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Abstract

We propose a simple ansatz for neutrino phenomenology, in which the relevant

lepton mass matrices take the universal Fritzsch-like form and the seesaw

relation holds under a particular condition. There exist six textures of this

nature, but their consequences on neutrino oscillations are exactly the same.

We show that our scenario is viable to account for the cosmological baryon

number asymmetry via thermal leptogenesis. Its predictions for the lepton-

flavor-violating decays µ → eγ, τ → µγ and τ → eγ are also presented. We

find that the branching ratios of these rare processes depend strongly upon the

phase parameters responsible for leptogenesis and for leptonic CP violation

in neutrino oscillations.
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I. INTRODUCTION

The Super-Kamiokande [1], SNO [2], KamLAND [3] and K2K [4] neutrino oscillation
experiments have provided us with very compelling evidence that neutrinos are massive and
lepton flavors are mixed. This important result indicates that the minimal supersymmetric
standard model (MSSM) is actually as incomplete as the standard model in describing the
neutrino phenomenology. A very simple but natural extension of the MSSM is to include one
right-handed neutrino in each of three lepton families, while the Lagrangian of electroweak
interactions keeps invariant under SU(2)L × U(1)Y gauge transformation. In this case, the
Lagrangian responsible for lepton masses can be written as

−Llepton = lLYlEH1 + lLYνNH2 +
1

2
N cMRN + h.c. , (1)

where lL denotes the left-handed lepton doublet, E and N stand respectively for the right-
handed charged lepton and Majorana neutrino singlets, and H1 and H2 (with hypercharges
±1/2) are the MSSM Higgs doublets. After spontaneous gauge symmetry breaking, one
obtains the charged lepton mass matrix Ml ≡ Yl〈H1〉 and the Dirac neutrino mass matrix
MD ≡ Yν〈H2〉. The scale of MR may be considerably higher than 〈H1,2〉, because right-
handed neutrinos are SU(2)L singlets and their mass term is not subject to electroweak
symmetry breaking. Thus the effective neutrino mass matrix Mν can be derived from MD

and MR via the seesaw relation Mν = MDM−1
R MT

D [5]. Although this elegant relation can
qualitatively attribute the smallness of left-handed neutrino masses to the largeness of right-
handed neutrino masses, it is unable to make any concrete predictions unless a specific lepton
flavor structure is assumed. Hence an appropriate combination of the seesaw mechanism and
possible flavor symmetries or texture zeros [6] is practically needed, in order to quantitatively
account for the neutrino mass spectrum and lepton flavor mixing.

One purpose of this paper is to incorporate the seesaw mechanism with the Fritzsch-
like textures of lepton mass matrices listed in Table 1. Those six patterns of Ml and Mν

are actually isomeric [7]; i.e., they have the same phenomenological consequences, although
their structures are apparently different from one another. If MD and MR take the same
Fritzsch-like form as Ml and Mν do, then the seesaw relation Mν = MDM−1

R MT
D will in

general be violated. We shall show that this relation can keep unchanged, provided the
condition BD/CD = BR/CR is satisfied. In this case, each nonvanishing matrix element of
Mν has a simple seesaw relation with its counterparts in MD and MR; i.e.,

Aν =
A2

D

AR
, Bν =

B2
D

BR
, Cν =

C2
D

CR
. (2)

The textures of MD, MR and Mν in Table 1 are therefore referred to as the seesaw-invariant
textures. Because the parameters of Mν can essentially be determined from current neutrino
oscillation data [8], it is then possible to impose useful constraints on the parameters of MD

and MR via Eq. (2).
Another purpose of this paper is to account for the cosmological baryon number asym-

metry via thermal leptogenesis [9]. Indeed, lepton number violation induced by the third
term of Llepton allows decays of the heavy Majorana neutrinos Ni (for i = 1, 2, 3) to happen.
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Since the decay can occur at both tree and one-loop levels, their interference may result in
a CP -violating asymmetry εi between the CP -conjugated Ni → l + Hc

2 and Ni → lc + H2

processes. If the masses of Ni are hierarchical (i.e., M1 < M2 < M3), the interactions of N1

can be in thermal equilibrium when N2 and N3 decay. The asymmetries ε2 and ε3 are there-
fore erased before N1 decays, and only the asymmetry ε1 produced by the out-of-equilibrium
decay of N1 survives. The point of leptogenesis [9] is that ε1 may give rise to a net lepton
number asymmetry YL ≡ (nL − nL̄)/s ∝ ε1, which is eventually converted into a net baryon
number asymmetry YB via nonperturbative sphaleron processes [10]: YB ≡ (nB−nB̄)/s ∝ YL.
Thus this mechanism provides a natural interpretation of the cosmological matter-antimatter
asymmetry, 7 × 10−11 <

∼ YB
<
∼ 10−10, which is drawn from the recent WMAP observational

data [11]. We shall show that six Fritzsch-like textures of lepton mass matrices in Table 1
yield the same ε1 and YB, from which useful constraints on the mass scale of three right-
handed neutrinos and the Majorana phase of CP violation can be obtained.

The third purpose of this paper is to calculate the rare lepton-flavor-violating processes
µ → eγ, τ → µγ and τ → eγ. We shall focus our attention on a rather conservative
case of lepton flavor violation, based on the scenarios where supersymmetry is broken in
a hidden sector and the breaking is transmitted to the observable sector by a flavor-blind
mechanism. We find that the values of Br(lj → liγ) depend strongly upon the phase
parameters responsible for leptogenesis and for CP violation in neutrino oscillations.

II. SEESAW-INVARIANT TEXTURES

Now let us show that the seesaw relation Mν = MDM−1
R MT

D will hold for each of the six
patterns listed in Table 1, if and only if the condition BD/CD = BR/CR is satisfied. To be
explicit, we take pattern (A) – namely, the Fritzsch texture [12], for example. Given the
Fritzsch form of MD and MR, the seesaw relation leads straightforwardly to

Mν =























0
C2

D

CR
0

C2
D

CR
0

BDCD

CR

0
BDCD

CR

A2
D

AR























+
C2

D

AR

(

BD

CD
−

BR

CR

)



















0 0 0

0
BD

CD
−

BR

CR

AD

CD

0
AD

CD
0



















. (3)

One can see that the second term of Eq. (3) will vanish, if BD/CD = BR/CR is taken. In this
case, the (2,3) or (3,2) element of Mν turns out to be BDCD/CR = B2

D/BR. Then Eq. (3) is
simplified to

Mν =























0
C2

D

CR
0

C2
D

CR
0

B2
D

BR

0
B2

D

BR

A2
D

AR























. (4)
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Comparing between the form of Mν in Eq. (4) and that defined in Table 1, we immediately
arrive at the elegant seesaw relations given in Eq. (2). This result implies that

BD

CD
=

BR

CR
=

Bν

Cν
(5)

holds. Eq. (5) imposes a strong constraint on the structure of MD, MR and Mν . Because
the magnitudes of Aν , Bν and Cν only have a quite weak hierarchy as required by current
experimental data [7], we are not allowed to assume Bν/Cν = Bl/Cl in a similar way. Indeed,
|Bν |/|Cν | ≪ |Bl|/|Cl| must hold. Without loss of generality, we take Al, Aν , AD and AR to
be real and positive. Then only the off-diagonal elements of Ma (for a = l, D, R or ν) are
complex. It is possible to decompose Ma into Ma = PaMaP

T
a , where

Ma =







0 Ca 0

Ca 0 Ba

0 Ba Aa





 (6)

and Pa = Diag{ei(ϕa−φ
a
), eiφ

a , 1} with Aa = Aa, Ba = |Ba|, Ca = |Ca|, φa ≡ arg(Ba) and
ϕa ≡ arg(Ca). Eq. (2) indicates that φν = 2φD − φR and ϕν = 2ϕD − ϕR hold. Hence
one can get the phase relation φD − ϕD = φR − ϕR = φν − ϕν from Eq. (5). Because of
Det(Ma) = −AaC

2
a < 0, it is more convenient to diagonalize Ma by using the transformation

(OaQ)T Ma (OaQ) =







λa
1 0 0
0 λa

2 0
0 0 λa

3





 , (7)

where Oa denotes a real orthogonal matrix, Q = Diag{1, i, 1} is a pure phase matrix defined
to cancel the minus sign of Det(Ma), and λa

i (for i = 1, 2, 3) stand for the positive eigenvalues
of Ma. Then we have

Aa = λa
1 − λa

2 + λa
3 ,

Ba =

[

(λa
1 − λa

2) (λa
2 − λa

3) (λa
1 + λa

3)

λa
1 − λa

2 + λa
3

]1/2

,

Ca =

(

λa
1λ

a
2λ

a
3

λa
1 − λa

2 + λa
3

)1/2

. (8)

Defining the dimensionless ratios xa ≡ λa
1/λ

a
2 and za ≡ λa

1/λ
a
3, we further obtain

Oa
11 = +

[

xa − za

(1 + xa) (1 − za) (xa − za + xaza)

]1/2

,

Oa
12 = −

[

x3
a (1 + za)

(1 + xa) (xa + za) (xa − za + xaza)

]1/2

,

Oa
13 = +

[

z3
a (1 − xa)

(1 − za) (xa + za) (xa − za + xaza)

]1/2

,
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Oa
21 = +

[

xa − za

(1 + xa) (1 − za)

]1/2

,

Oa
22 = +

[

xa (1 + za)

(1 + xa) (xa + za)

]1/2

,

Oa
23 = +

[

za (1 − xa)

(1 − za) (xa + za)

]1/2

,

Oa
31 = −

[

xaza (1 − xa) (1 + za)

(1 + xa) (1 − za) (xa − za + xaza)

]1/2

,

Oa
32 = −

[

za (1 − xa) (xa − za)

(1 + xa) (xa + za) (xa − za + xaza)

]1/2

,

Oa
33 = +

[

xa (1 + za) (xa − za)

(1 − za) (xa + za) (xa − za + xaza)

]1/2

. (9)

The full calculability of Ma is quite encouraging, because it implies that the parameters of
MD can be determined in terms of those of Mν and MR:

AD =
√

AνAR , BD =
√

BνBR , CD =
√

CνCR . (10)

It is then possible to link the observables of leptogenesis and lepton flavor violation to the
masses of three light neutrinos (mi) and three heavy neutrinos (Mi) in a rather simple way.

One may straightforwardly show that the other five patterns of neutrino mass matrices
in Table 1 are also seesaw-invariant under the condition BD/CD = BR/CR. Thus Eqs. (2),
(5) and (10) are universally valid. We diagonalize Ma via the transformation

(P ∗
a OaQ)T Ma (P ∗

a OaQ) = (OaQ)T Ma (OaQ) , (11)

as defined in Eq. (7). The relevant forms of Pa and Oa are listed in Table 1 for six Fritzsch-
like textures of lepton mass matrices. Then we find that Eqs. (8) and (9) universally hold.
This result allows us to discuss six isomeric patterns of Ma in a uniform way.

The phenomenon of lepton flavor mixing arises from the mismatch between diagonal-
izations of Ml and Mν . It is described by the unitary matrix V = (P ∗

l OlQ)T (P ∗
ν OνQ)∗.

Explicitly,

|Vpq| =
∣

∣

∣Ol
1pO

ν
1qe

iα + Ol
2pO

ν
2qe

iβ + Ol
3pO

ν
3q

∣

∣

∣ , (12)

where the subscripts p and q run respectively over (e, µ, τ) and (1, 2, 3), and the phases α
and β are defined by α ≡ (ϕν − ϕl ) − β and β ≡ (φν − φl ). It is clear that |Vpq| depend
only upon four free parameters: xν , zν , α and β, because the mass ratios of charged leptons
xl and zl are well known. The parameter space of (xν , zν) and (α, β) can be determined
from current experimental data on solar, atmospheric and reactor neutrino oscillations. A
detailed analysis has been done in Ref. [7]. It is found that the Fritzsch-like textures of Ml

and Mν can fit the present data at the 3σ level.
Instead of repeating the analysis done before, we shall subsequently concentrate on the

consequences of our phenomenological ansatz on thermal leptogenesis and lepton flavor
violation.
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III. THERMAL LEPTOGENESIS

As argued above, we assume that three heavy right-handed neutrinos have a clear mass
hierarchy and the out-of-equilibrium decay of the lightest one (N1) is the only source of
lepton number asymmetry. In the flavor basis where both Ml and MR are diagonal, real and
positive, the CP-violating asymmetry between N1 → l + Hc

2 and N1 → lc + H2 processes
reads [13]

ε1 ≡
Γ(N1 → l + Hc

2) − Γ(N1 → lc + H2)

Γ(N1 → l + Hc
2) + Γ(N1 → lc + H2)

≈ −
3

8π
·
xRIm

[

(M̃ †
DM̃D)12

]2
+ zRIm

[

(M̃ †
DM̃D)13

]2

〈H2〉2(M̃
†
DM̃D)11

, (13)

in which xR ≡ M1/M2 and zR ≡ M1/M3 with a normal mass hierarchy z2
R ≪ x2

R ≪ 1,
〈H2〉 = v sin βsusy with v ≈ 174 GeV, and M̃D = (P ∗

l OlQ)T MD(P ∗
RORQ). Note that M̃ †

DM̃D

can be expressed as

M̃ †
DM̃D = (PORQ)† M

2
D (PORQ) , (14)

where P ≡ P T
DP ∗

R = Diag{1, eiσ, 1} with σ ≡ φD − φR. In obtaining this result, we have
used the phase relation φD − ϕD = φR − ϕR. It is remarkable that only a single phase
parameter σ contributes to M̃ †

DM̃D. If σ vanishes, there will be no CP violation in the
lepton-number-violating decays of heavy Majorana neutrinos Ni. We emphasize that σ has
no direct connection with the effect of leptonic CP violation in neutrino oscillations. The
latter is actually associated with the phase differences α and β appearing in Eq. (12) [8].
Only in the special case that φl and ϕl are switched off (or fixed to certain values), it is
possible to indirectly link σ to α and β. For example, φl = ϕl = 0 leads to β = σ + φD and
α = ϕν − β.

With the help of Eqs. (6) and (14), we obtain the explicit expressions of (M̃ †
DM̃D)11,

Im[(M̃ †
DM̃D)12]

2 and Im[(M̃ †
DM̃D)13]

2 as follows:

(M̃ †
DM̃D)11 = A2

D(OR
31)

2 + B2
D

[

(OR
21)

2 + (OR
31)

2
]

+ C2
D

[

(OR
11)

2 + (OR
21)

2
]

+2ADBDOR
21O

R
31 cos σ + 2BDCDOR

11O
R
31 , (15)

and

Im[(M̃ †
DM̃D)12]

2 = −2ADBD

(

OR
22O

R
31 − OR

21O
R
32

) [

A2
DOR

31O
R
32 + B2

D

(

OR
21O

R
22 + OR

31O
R
32

)

+C2
D

(

OR
11O

R
12 + OR

21O
R
22

)

+ ADBD

(

OR
21O

R
32 + OR

22O
R
31

)

cos σ

+BDCD

(

OR
11O

R
32 + OR

12O
R
31

)]

sin σ ,

Im[(M̃ †
DM̃D)13]

2 = +2ADBD

(

OR
23O

R
31 − OR

21O
R
33

) [

A2
DOR

31O
R
33 + B2

D

(

OR
21O

R
23 + OR

31O
R
33

)

+C2
D

(

OR
11O

R
13 + OR

21O
R
23

)

+ ADBD

(

OR
21O

R
33 + OR

23O
R
31

)

cos σ

+BDCD

(

OR
11O

R
33 + OR

13O
R
31

)]

sin σ . (16)
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Combining Eqs. (13) and (16), one can clearly see that the CP-violating asymmetry ε1 is
proportional to AD|BD| sinσ. Hence σ is the only source of CP violation for the decays of
heavy right-handed neutrinos in our ansatz.

Apart from sin βsusy or tan βsusy, the free parameters of ε1 include mi, Mi (for i = 1, 2, 3)
and σ. Current neutrino oscillation data allow us to constrain mi or equivalently xν , zν and
m3 to an acceptable degree of accuracy [7]. The ratio

r ≡
BR

CR
=

Bν

Cν
=

√

(1 − xν) (1 + zν) (xν − zν)

xνzν
(17)

can then be determined. Note that Eq. (17) remains valid, if (xν , zν) are replaced by
(xR, zR). This implies that xR and zR are correlated with each other for a given value of r.
Indeed, it is straightforward to obtain

zR =

√

[

(1 − xR)2 + r2xR

]2
+ 4xR (1 − xR)2 −

[

(1 − xR)2 + r2xR

]

2 (1 − xR)
. (18)

Taking account of Eq. (18), we are left with four unknown parameters to evaluate the
magnitude of ε1; namely, M1, xR, σ and tanβsusy.

In the spirit of thermal leptogenesis [9], the CP-violating asymmetry ε1 may lead to
a net lepton number asymmetry YL ≡ (nL − nL̄)/s = ε1d/g∗, where g∗ = 228.75 is an
effective number characterizing the relativistic degrees of freedom which contribute to the
entropy s of the early universe, and d accounts for the dilution effects induced by the
lepton-number-violating wash-out processes. This lepton number asymmetry is eventually
converted into a net baryon number asymmetry YB ≡ (nB − nB̄)/s via nonperturbative
sphaleron processes [10]: YB ≈ −0.53YL in the MSSM with three fermion families and two
Higgs doublets. Although the dilution factor d can be computed by solving the full set
of Boltzmann equations, it is more convenient to adopt a simple analytical approximation
of d proposed in Ref. [14]: d ≈ 0.02 × (0.01 eV/m̃1)

1.1, where m̃1 ≡ (M̃ †
DM̃D)11/M1 is an

effective neutrino mass parameter and its plausible magnitude is expected to lie in the range
10−2 eV <

∼ m̃1
<
∼ 1 eV (the so-called strong washout regime [14]). If our phenomenological

ansatz of lepton mass matrices is viable for leptogenesis, it should be able to reproduce the
observed magnitude of YB (i.e., 7 × 10−11 <

∼ YB
<
∼ 10−10 [11]).

To evaluate ε1 and YB, we adopt xν ≈ 1/3, zν ≈ 1/12 and m3 ≈ 0.05 eV as favorable
inputs given in Ref. [7]. In addition, we typically take tanβsusy ≈ 10 and xR ≈ 1/4. We allow
M1 and σ to vary, in order to reproduce YB in its afore-mentioned range. Then we arrive
at the parameter space of M1 and σ, as shown in Fig. 1. The lower bound of M1 is about
1.1×1010 GeV, while the lower limit of σ approximately reads 5.8◦. When M1 is much higher
than 1012 GeV, the value of σ becomes closer to 57◦. Note that there is in general a potential
conflict between achieving successful thermal leptogenesis and avoiding overproduction of
gravitinos in the conventional seesaw model with supersymmetry [15]. If the mass scale of
gravitinos is of O(1) TeV, one must have M1

<
∼ 108 GeV. This limit is apparently disfavored

in our ansatz. Such a problem could be circumvented in other supersymmetric breaking
mediation scenarios (e.g., gauge mediation), where the gravitino mass can be much lighter
or through a weakening of the constraints on the reheating temperature [15,16].
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IV. LEPTON FLAVOR VIOLATION

We proceed to discuss the consequence of our phenomenological scenario on lepton flavor
violation in the framework of MSSM with three heavy right-handed neutrinos. We restrict
ourselves to a very simple and conservative case where supersymmetry is broken in a hidden
sector and the breaking is transmitted to the observable sector by a flavor blind mechanism,
such as gravity [16]. Then all the soft breaking terms are diagonal at high energy scales,
and the only source of lepton flavor violation in the charged lepton sector is the radiative
correction to the soft terms through the neutrino Yukawa couplings. In other words, the low-
energy lepton-flavor-violating processes lj → liγ (for i, j = e, µ, τ and mj > mi ) are induced
by the renormalization-group effects of the slepton mixing. The off-diagonal elements of the
left-handed slepton mass matrix can be written as [17]

(

M2
L̃

)

ij
≈ −

3m2
0 + A2

0

8π2v2 sin2 βsusy

(

M̃DLM̃ †
D

)

ij
(19)

in the leading-logarithmic approximation, where m0 and A0 denote the universal scalar soft
mass and the trilinear term at the GUT scale, respectively. Note that the diagonal matrix
L in Eq. (19) measures the difference between the scale of heavy Majorana neutrinos and
that of GUT,

L =







ln MGUT

M1
0 0

0 ln MGUT

M2
0

0 0 ln MGUT

M3





 . (20)

The branching ratios of lj → liγ can approximately be given by

Br(lj → liγ) ≈
α3

G2
F

·
|(M2

L̃
)ij|

2

m8
S

tan2 βsusy (21)

with m8
S ≈ 0.5m2

0M
2
1/2(m

2
0 +0.6M2

1/2)
2, where M1/2 denotes the gaugino mass [18]. Once the

texture of M̃D is specified, it will be possible to get concrete predicitions for Br(lj → liγ).

Given the Fritzsch-like textures of Ma (for a = l, ν, D, R), the quantity M̃DLM̃ †
D can be

rewritten as

M̃DLM̃ †
D =

(

QOT
l P ′MDPOR

)

L
(

QOT
l P ′MDPOR

)†
(22)

in the chosen flavor basis (i.e., both Ml and MR are diagonal, real and positive), where
P ′ ≡ P †

l PD = Diag{eiα, eiρ, 1} with α ≡ (ϕD − φD) − (ϕl − φl ) and ρ ≡ φD − φl , and all
the other matrices have been given before. Note that the phase α defined here is just the
one defined in Eq. (12) for the lepton flavor mixing matrix V , because the phase equation
ϕD − φD = ϕν − φν = ϕR − φR does hold in our ansatz. Furthermore, it is easy to prove

ρ + σ = 2φD − φR − φl = φν − φl = β , (23)

where the seesaw phase relation φν = 2φD − φR has been used. Let us summarize the phase
parameters appearing in three categories of phenomena at this point:
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Neutrino oscillations : α and β ;

Thermal leptogenesis : σ ;

Lepton flavor violation : α and ρ = β − σ .

We see that V , YB and Br(lj → liγ) totally involve three free phases. Among them, α and β
can be determined from the precise measurement of lepton flavor mixing and CP violation in
neutrino oscillations. Current neutrino oscillation data do favor β ≈ π, but they are unable
to provide a narrow constraint on α [7]. If the value of α is fixed, nevertheless, one may
examine the dependence of Br(lj → liγ) on σ with the help of ρ ≈ π − σ.

To illustrate, we take α ≈ 30◦, β ≈ 180◦ and xR ≈ 1/4 in addition to xν ≈ 1/3,
zν ≈ 1/12 and m3 ≈ 0.05 eV [7]. The supersymmetric parameters relevant to our calculation
are typically chosen as tan βsusy ≈ 10, A0 ≈ 0, m0 ≈ 100 GeV, M1/2 ≈ 300 GeV and
MGUT ≈ 2 × 1016 GeV. Then we are left with two free parameters M1 and σ, just like the
case of thermal leptogenesis. Allowing M1 and σ to vary, we calculate Br(lj → liγ) by using
Eqs. (19)–(23) and by including the leptogenesis constraint 7 × 10−11 <

∼ YB
<
∼ 10−10. The

experimental upper bounds of Br(lj → liγ) should certainly be taken into account [19]:

Br(µ → eγ) < 1.2 × 10−11 ,

Br(τ → eγ) < 3.6 × 10−7 ,

Br(τ → µγ) < 3.1 × 10−7 . (24)

Our numerical results are shown in Figs. 2–4. Once can see that the predicted branching
ratios of µ → eγ, τ → eγ and τ → µγ are all below their corresponding experimental upper
limits. A generic feature of Br(lj → liγ) is that they increase with the phase parameter
σ. In particular, Br(µ → eγ) ∼ 10−12 is reachable for σ ∼ 55◦. Of course, the magnitudes
of Br(lj → liγ) will change, if different values of the supersymmetric parameters are input.
Instead of examining the full parameter space, here we have paid our main attention to the
parameter correlation between leptogenesis and lepton-flavor-violating processes.

V. SUMMARY

We have incorporated the seesaw mechanism with six Fritzsch-like textures of lepton
mass matrices. It is found that the seesaw relation holds under a particular condition, and
the consequences of those textures on lepton flavor mixing are exactly the same. Applying
this simple ansatz to thermal leptogenesis, we have shown that CP violation in the lepton-
number-violating decays of heavy right-handed neutrinos depends only upon a single phase
parameter and the cosmological baryon number asymmetry can naturally be explained. The
lepton-flavor-violating processes µ → eγ, τ → µγ and τ → eγ have also been calculated.
An interesting result is that the branching ratios of those rare processes rely strongly upon
the phase parameters appearing in leptogenesis and in neutrino oscillations. We expect that
a stringent test of our phenomenological scenario will be available in the near future, when
more precise experimental data are accumulated.

This work was supported in part by the National Natural Science Foundation of China.

9



REFERENCES

[1] For a review, see: C.K. Jung et al., Ann. Rev. Nucl. Part. Sci. 51, 451 (2001).
[2] SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002).
[3] KamLAND Collaboration, K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003).
[4] K2K Collaboration, M.H. Ahn et al., Phys. Rev. Lett. 90, 041801 (2003).
[5] P. Minkowski, Phys. Lett. B 67, 421 (1977); T. Yanagida, in Proceedings of the Workshop

on Unified Theory and the Baryon Number of the Universe, edited by O. Sawada and
A. Sugamoto (KEK, Tsukuba, 1979), p. 95; M. Gell-Mann, P. Ramond, and R. Slansky,
in Supergravity, edited by F. van Nieuwenhuizen and D. Freedman (North Holland,
Amsterdam, 1979), p. 315; S.L. Glashow, in Quarks and Leptons, edited by M. Lévy et

al. (Plenum, New York, 1980), p. 707; R.N. Mohapatra and G. Senjanovic, Phys. Rev.
Lett. 44, 912 (1980).

[6] See, e.g., H. Fritzsch and Z.Z. Xing, Prog. Part. Nucl. Phys. 45, 1 (2000); F. Feruglio,
hep-ph/0410131; and references therein.

[7] Z.Z. Xing and S. Zhou, Phys. Lett. B 593, 156 (2004); S. Zhou and Z.Z. Xing, hep-
ph/0404188.

[8] Z.Z. Xing, Phys. Lett. B 550, 178 (2002); M. Fukugita, M. Tanimoto, and T. Yanagida,
Phys. Lett. B 562, 273 (2003).

[9] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
[10] V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).
[11] D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003).
[12] H. Fritzsch, Phys. Lett. B 73, 317 (1978); Nucl. Phys. B 155, 189 (1979).
[13] See, e.g., Z.Z. Xing, Int. J. Mod. Phys. A 19, 1 (2004); and references therein.
[14] W. Buchmüller, P. Di Bari, and M. Plümacher, hep-ph/0401240; hep-ph/0406014. A
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TABLES

TABLE I. The Fritzsch-like lepton mass matrix Ma (for a = l,D,R, ν), where arg(Aa) ≡ 0,

arg(Ba) ≡ φa and arg(Ca) ≡ ϕa. The phase matrix Pa and the real orthogonal matrix Oa are

defined to diagonalize Ma via the transformation (P ∗
a OaQ)T Ma(P

∗
a OaQ) with Q ≡ Diag{1, i, 1}.

The explicit expressions of Oa
ij (for i, j = 1, 2, 3) are given in Eq. (9).

Pattern Ma Pa Oa

(A)





0 Ca 0

Ca 0 Ba

0 Ba Aa









ei(ϕ
a
−φ

a
) 0 0

0 eiφ
a 0

0 0 1









Oa
11 Oa

12 Oa
13

Oa
21 Oa

22 Oa
23

Oa
31 Oa

32 Oa
33





(B)





0 0 Ca

0 Aa Ba

Ca Ba 0









ei(ϕ
a
−φ

a
) 0 0

0 1 0

0 0 eiφ
a









Oa
11 Oa

12 Oa
13

Oa
31 Oa

32 Oa
33

Oa
21 Oa

22 Oa
23





(C)





0 Ca Ba

Ca 0 0

Ba 0 Aa









eiφ
a 0 0

0 ei(ϕ
a
−φ

a
) 0

0 0 1









Oa
21 Oa

22 Oa
23

Oa
11 Oa

12 Oa
13

Oa
31 Oa

32 Oa
33





(D)





0 Ba Ca

Ba Aa 0

Ca 0 0









eiφ
a 0 0

0 1 0

0 0 ei(ϕ
a
−φ

a
)









Oa
21 Oa

22 Oa
23

Oa
31 Oa

32 Oa
33

Oa
11 Oa

12 Oa
13





(E)





Aa 0 Ba

0 0 Ca

Ba Ca 0









1 0 0

0 ei(ϕ
a
−φ

a
) 0

0 0 eiφ
a









Oa
31 Oa

32 Oa
33

Oa
11 Oa

12 Oa
13

Oa
21 Oa

22 Oa
23





(F)





Aa Ba 0

Ba 0 Ca

0 Ca 0









1 0 0

0 eiφ
a 0

0 0 ei(ϕ
a
−φ

a
)









Oa
31 Oa

32 Oa
33

Oa
21 Oa

22 Oa
23

Oa
11 Oa

12 Oa
13
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FIGURES

1010
1011
1012
1013

0Æ 10Æ 20Æ 30Æ 40Æ 50Æ 60Æ

M1(GeV)

�
FIG. 1. The allowed ranges of σ and M1 to reproduce 7×10−11 ≤ YB ≤ 10−10 via leptogenesis,

where m3 ≈ 0.05 eV, xν ≈ 1/3, zν ≈ 1/12, xR ≈ 1/4 and tan βsusy ≈ 10 have typically been input.
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FIG. 2. The allowed ranges of σ and Br(µ → eγ), where m3 ≈ 0.05 eV, xν ≈ 1/3, zν ≈ 1/12,

xR ≈ 1/4 and tan βsusy ≈ 10 have typically been input.
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FIG. 3. The allowed ranges of σ and Br(τ → eγ), where m3 ≈ 0.05 eV, xν ≈ 1/3, zν ≈ 1/12,

xR ≈ 1/4 and tan βsusy ≈ 10 have typically been input.
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FIG. 4. The allowed ranges of σ and Br(τ → µγ), where m3 ≈ 0.05 eV, xν ≈ 1/3, zν ≈ 1/12,

xR ≈ 1/4 and tan βsusy ≈ 10 have typically been input.
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